Within the next three months, Honeywell will bring to market the world’s most powerful quantum computer in ter

Within the next three months, Honeywell will bring to market the world’s most powerful quantum computer in ter

Within the next three months, Honeywell will bring to market the worlds most powerful quantum computer in terms of quantum volume, a measure of quantum capability that goes beyond the number of qubits. Quantum volume measures computational ability, indicating the relative complexity of a problem that can be solved by a quantum computer. Honeywells quantum computer will have a quantum volume of at least 64. This is twice as much as the best current system.
Honeywell has demonstrated its quantum charge coupled device (QCCD) architecture, a major technical breakthrough in accelerating quantum capability. The company also announced it is on a trajectory to increase its computers quantum volume by an order of magnitude each year for the next five years.
This means they will have a trapped ion quantum computer with a quantum volume of 6.4 million in 2025. This would be a better path for quantum computers capability than what IBM had forecast. IBM had expected a quantum volume of 1000 in 2025 and about 100,000 in 2030. If Honeywell can deliver then this would mean vastly more capable systems by 2022 than what IBM expected by 2026.
IBM’s old forecast for quantum computer power to 2030
Quantum Volume is a single-number metric that can be measured using a concrete protocol on near-term quantum computers of modest size. The QV method quantifies the largest random circuit of equal width and depth that the computer successfully implements. Quantum computing systems with high-fidelity operations, high connectivity, large calibrated gate sets, and circuit rewriting toolchains are expected to have higher quantum volumes.
This breakthrough in quantum volume results from Honeywells solution having the highest-quality, fully-connected qubits with the lowest error rates.
To accelerate the development of quantum computing and explore practical applications for its customers, Honeywell Ventures, the strategic venture capital arm of Honeywell, has made investments in two leading quantum software and algorithm providers Cambridge Quantum Computing (CQC) and Zapata Computing. Both Zapata and CQC complement Honeywells own quantum computing capabilities by bringing a wealth of cross-vertical market algorithm and software expertise. CQC has strong expertise in quantum software, specifically a quantum development platform and enterprise applications in the areas of chemistry, machine learning and augmented cybersecurity. Zapata creates enterprise-grade, quantum-enabled software for a variety of industries and use cases, allowing users to build quantum workflows and execute them freely across a range of quantum and classical devices.
Honeywell also announced that it will collaborate with JPMorgan Chase, a global financial services firm, to develop quantum algorithms using Honeywells computer.
Honeywells quantum computer uses trapped-ion technology, which leverages numerous, individual, charged atoms (ions) to hold quantum information. Honeywells system applies electromagnetic fields to hold (trap) each ion so it can be manipulated and encoded using laser pulses.
Honeywells trapped-ion qubits can be uniformly generated with errors more well understood compared with alternative qubit technologies that do not directly use atoms. These high-performance operations require deep experience across multiple disciplines, including atomic physics, optics, cryogenics, lasers, magnetics, ultra-high vacuum, and precision control systems. Honeywell has a decades-long legacy of expertise in these technologies.
Today, Honeywell has a cross-disciplinary team of more than 100 scientists, engineers, and software developers dedicated to advancing quantum volume and addressing real enterprise problems across industries.
SOURCES- Honeywell, IBMWritten By Brian Wang, Nextbigfuture.com
Brian Wang is a prolific business-oriented writer of emerging and disruptive technologies. He is known for insightful articles that combine business and technical analysis that catches the attention of the general public and is also useful for those in the industries. He is the sole author and writer of nextbigfuture.com, the top online science blog. He is also involved in angel investing and raising funds for breakthrough technology startup companies.
He gave the recent keynote presentation at Monte Jade event with a talk entitled the Future for You.  He gave an annual update on molecular nanotechnology at Singularity University on nanotechnology, gave a TEDX talk on energy, and advises USC ASTE 527 (advanced space projects program). He has been interviewed for radio, professional organizations. podcasts and corporate events. He was recently interviewed by the radio program Steel on Steel on satellites and high altitude balloons that will track all movement in many parts of the USA.
He fundraises for various high impact technology companies and has worked in computer technology, insurance, healthcare and with corporate finance.
He has substantial familiarity with a broad range of breakthrough technologies like age reversal and antiaging, quantum computers, artificial intelligence, ocean tech,  agtech, nuclear fission, advanced nuclear fission, space propulsion, satellites, imaging, molecular nanotechnology, biotechnology, medicine, blockchain, crypto and many other areas.

Share